ORGANIC LETTERS

2005 Vol. 7, No. 19 4265–4268

Efficient Photocatalytic Oxygenation of Aromatic Alkene to 1,2-Dioxetane with Oxygen via Electron Transfer

Kei Ohkubo, Takashi Nanjo, and Shunichi Fukuzumi*

Department of Material and Life Science, Graduate School of Engineering, Osaka University, SORST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan

fukuzumi@chem.eng.osaka-u.ac.jp

Received July 19, 2005

ABSTRACT

Photocatalytic oxygenation of tetraphenylethylene (TPE) with oxygen occurs efficiently via electron-transfer reactions of TPE and oxygen with a photogenerated electron transfer state of 9-mesityl-10-methylacridniium ion, followed by the radical-coupling reaction between TPE radical cation and O₂•- to produce 1,2-dioxetane selectively. The further photocatalytic cleavage of the O-O bond of dioxetane affords benzophenone as the final oxygenated product.

1,2-Dioxetanes have attracted considerable interest because of the key roles in chemiluminescence and bioluminescence, ^{1,2} which have a broad range of biological, chemical, and medical applications. ^{3–5} The most common preparation of 1,2-dioxetanes is through the formal [2 + 2] cycloaddition of singlet oxygen ($^{1}O_{2}$) to electron-rich alkenes. ^{6,7} Diastereoselective formation of dioxetanes has also been achieved by a chiral-axially induced [2 + 2] cycloaddition of $^{1}O_{2}$ with a chiral allylic alcohol and enecarbamates. ^{8–10} If alkenes are

products were obtained. For example, it was reported that no products were formed in an oxygen-saturated acetonitrile solution of tetraphenylethylene (TPE) in the presence of ${}^{1}O_{2}$ sensitizers under photoirradiation. 11

too electron poor to react with ¹O₂, however, no oxygenated

We report herein that the photocatalytic oxygenation of TPE with O₂ occurs efficiently with 9-mesityl-10-methylacridinium ion (Acr⁺-Mes) via the radical coupling between TPE radical cation (TPE•+) and O₂•-, both of which were produced by electron-transfer reactions of TPE and O₂ with the photogenerated electron-transfer state of Acr⁺-Mes (Acr^{*}-Mes•+), 12 leading to successful isolation of the corresponding

^{(1) (}a) Schuster, G. B. Acc. Chem. Res. 1979, 12, 366. (b) Vysotski, E. S.; Lee, J. Acc. Chem. Res. 2004, 37, 405.

⁽²⁾ Isobe, H.; Takano, Y.; Okumura, M.; Kuramitsu, S.; Yamaguchi, K. *J. Am. Chem. Soc.* **2005**, *127*, 8667.

⁽³⁾ Active Oxygen in Chemistry; Foote, C. S., Valentine, J. S., Greenberg, A., Liebman, J. F., Eds.; Blackie Academic and Professional: New York, 1995; Vol. 2.

⁽⁴⁾ Adam, W. Four-Membered Ring Peroxides: 1,2-Dioxetanes and -Peroxylactones, The Chemistry of Peroxides; Patai, S., Ed.; John Wiley & Sons, Ltd.: New York, 1983; Chapter 24, pp 829–920.

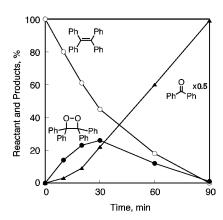
^{(5) (}a) Mayer, A.; Neuenhoefer, S. Angew. Chem., Int. Ed. Engl. 1994, 33, 1044. (b) Adam, W.; Reinhardt, D.; Saha-Möller, C. R. Analyst 1996, 121, 1527.

⁽⁶⁾ Wilson, T.; Schaap, A. P. J. Am. Chem. Soc. 1971, 93, 4126.

⁽⁷⁾ Frimer, A. A. Singlet Oxygen, Volume 2: Reaction Modes and Products, Part I; CRC Press: Boca Raton, 1985.

⁽⁸⁾ Adam, W.; Saha-Möller, C. R.; Schambony, S. B. J. Am. Chem. Soc. 1999, 121, 1834.

^{(9) (}a) Adam, W.; Bosio, S. G.; Turro, N. J. J. Am. Chem. Soc. 2002, 124, 8814. (b) Poon, T.; Sivaguru, J.; Franz, R.; Jockusch, S.; Martinez, C.; Washington, I.; Adam, W.; Inoue, Y.; Turro, N. J. J. Am. Chem. Soc. 2004, 126, 10498.


⁽¹⁰⁾ For other methods of the stereoselective dioxetane formation, see: Avery, M. A.; Jennings-White, C.; Chong, W. K. M. J. Org. Chem. 1989, 54, 1789.

⁽¹¹⁾ Burns, P. A.; Foote, C. S. J. Am. Chem. Soc. 1974, 96, 4339.

⁽¹²⁾ Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. *J. Am. Chem. Soc.* **2004**, *126*, 1600.

1,2-dioxetane. 13 It was confirmed that no oxygenation occurred in an O_2 -saturated solution of TPE containing C_{60} or tetraphenylporphyrin as 1O_2 sensitizers instead of Acr $^+$ -Mes under otherwise the same experimental conditions, i.e., photoirradiation time, concentration of TPE, and solvent. 14

Visible light irradiation (λ > 430 nm) of the absorption band of Acr⁺-Mes (2.0 × 10⁻³ M) in an O₂-saturated chloroform (CHCl₃) solution containing TPE (1.5 × 10⁻² M) results in formation of the oxygenation products, i.e., dioxetane after 30 min irradiation by a 500 W xenon lamp. The photoirradiation time profiles are shown in Figure 1.

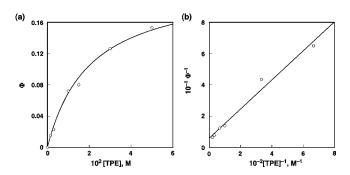


Figure 1. Photoirradiation time profiles of photooxygenation of TPE $(1.5 \times 10^{-2} \text{ M})$ in the presence of Acr⁺-Mes $(5.0 \times 10^{-3} \text{ M})$ in O₂-saturated CDCl₃ (0.6 mL).

The dioxetane is converted to benzophenone quantitatively (199% based on the consumption of TPE) at prolonged irradiation time (Figure 1).

The photocatalytic oxygenation of TPE with O_2 on a preparative scale (60 mg, 1.8×10^{-4} mol) with Acr⁺-Mes (3.8 mg, 8.7×10^{-6} mol) in chloroform (2.0 mL) was also performed to isolate the corresponding 1,2-dioxetane (27% yield) after 4 h of photoirradiation at 278 K. The dioxetane was characterized by ¹H NMR, ¹³C NMR, and IR spectra. ^{15,16} The purity of dioxetane was >99%, estimated by ¹H NMR (see the Supporting Information). Photooxygenation also

occurred in MeCN; however, the rate is much slower than the case in CHCl₃. The product yield in MeCN was determined to be 156% after 2 h photoirradiation. The quantum yields (Φ) of the formation of the dioxetane were determined from the formation rate of benzophenone under irradiation of monochromatized light of $\lambda = 430$ nm. The Φ values were the same at different oxygen concentrations. The Φ value increases with an increase in concentration of TPE to approach a limitting value (Φ_{∞}) (Figure 2a). ¹⁷ The

Figure 2. (a) Dependence of the quantum yield (Φ) of benzophenone on concentration of TPE for the Acr⁺-Mes $(5.0 \times 10^{-3} \text{ M})$ -catalyzed photooxygenation of TPE in oxygen-saturated CHCl₃ at 298 K. (b) Plot of Φ^{-1} vs $[\text{TPE}]^{-1}$.

linear plot of Φ^{-1} and $[TPE]^{-1}$ in accordance with eq 1 is shown in Figure 2b. From the intercept in Figure 2b, the

$$\Phi^{-1} = \Phi_{\infty}^{-1} [1 + \text{const} \times [\text{TPE}]^{-1}]$$
 (1)

 Φ_{∞} value is determined as 17% in CHCl₃. The Φ_{∞} value is also determined in MeCN as listed in Table 1.

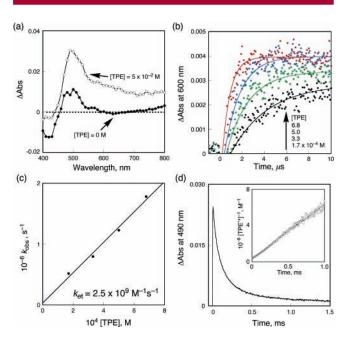
Table 1. Rate Constants of Electron Transfer ($k_{\rm et}$ and $k'_{\rm et}$) and Radical Coupling ($k_{\rm c}$), Limiting Quantum Yield (Φ_{∞}), and Product Yields of Benzophenone

	MeCN	CHCl_3
$k_{ m et},{ m M}^{-1}{ m s}^{-1}$	$7.2 imes 10^8$	$2.5 imes 10^9$
$k^_{\mathrm{et}},\mathrm{M}^{-1}\;\mathrm{s}^{-1}$	$6.8 imes 10^8$	$3.8 imes 10^8$
$k_{ m c},{ m M}^{-1}{ m s}^{-1}$	$1.0 imes 10^{10}$	$6.0 imes 10^9$
$\Phi_{\scriptscriptstyle\infty},\%$	2.2	17
product yield, a %	156^b	199^c

 $[^]a$ Based on the consumption of TPE and determined from 1 H NMR. b After 2.0 h of photoirradiation. c After 1.5 h of photoirradiation.

Nanosecond laser excitation at 430 nm of a deaerated CHCl₃ solution of Acr⁺—Mes results in formation of the electron-transfer state (Acr^{*}—Mes^{*}) via photoinduced electron transfer from the Mes moiety to the singlet excited state

4266 Org. Lett., Vol. 7, No. 19, 2005


⁽¹³⁾ For the [4 + 2] cycloaddition of anthracene radical cation with O₂•-, see: Kotani, H.; Ohkubo, K.; Fukuzumi, S. *J. Am. Chem. Soc.* **2004**, *126*, 15999.

⁽¹⁴⁾ Very slow reaction of TPE with 1O_2 has been reported. Rio, G.; Berthelot, J. Bull. Chem. Soc. Fr. 1969, 3609.

⁽¹⁵⁾ Typically, a chloroform solution (2 mL) containing Acr⁺-Mes (3.8 mg, 8.7×10^{-6} mol) and TPE (60 mg, 1.8×10^{-4} mol) in a Schlenk flask with a rubber septum was saturated with oxygen by bubbling with oxygen through a stainless steel needle for 20 min. The solution was then irradiate with a 500 W xenon lamp (Ushio Optical ModelX SX-UID 500XAMQ) through a color filter glass (Asahi Techno Glass Y43) transmitting $\lambda > 430$ nm at 278 K. After 5 h of photoirradiation, the corresponding dioxetane was isolated by silica gel column chromatography (hexane/chloroform v/v 2/1) as a pale yellow solid (27% yield). The product is moisture sensitive. Tetraphenylethylene dioxetane: $^1\mathrm{H}$ NMR (300 MHz, CDCl₃) δ 7.14–7.18 (m, 12H), 7.22–7.28 (m, 8H); $^{13}\mathrm{C}$ NMR (600 MHz, CDCl₃) δ 97.77 (C–O), 127.39, 127.57, 127.69, 140.16; IR(KBr) 956 (O–O), 1010 (C–O) cm $^{-1}$; mp 93–95 °C.

⁽¹⁶⁾ Caution! Dryness of dioxetane may result in explosion. All preparation should be handled with care and dioxane used only in small quantities.

⁽¹⁷⁾ A standard actinometer (potassium ferrioxalate) was used for the quantum yield determination of the photocatalytic oxygenation of TPE with O₂.

Figure 3. (a) Transient absorption spectra observed in photo-induced electron-transfer oxidation of TPE (0.05 M) with Acr⁺-Mes (6.0 \times 10⁻⁵ M) taken 2.0 μ s after laser excitation at 430 nm in deaerated CHCl₃ at 298 K. (b) Time profiles at 600 nm with single-exponential curve. (c) Plot of pseudo-first-order rate constant ($k_{\rm obs}$) vs concentration of TPE. (d) Decay time profile at 490 nm observed in photoinduced electron-transfer oxidation of TPE (0.05 M) with Acr⁺-Mes (6.0 \times 10⁻⁵ M) in O₂-saturated CHCl₃. Inset: second-order plot.

of the Acr⁺ moiety as shown in Figure 3a (closed circles). Since the one-electron reduction potential of Acr[•]-Mes^{•+} $(E_{\rm red}=1.88~{
m V~vs~SCE})^{12}$ is more positive than the oneelectron oxidation potential of TPE ($E_{ox} = 1.31 \text{ V vs SCE}$ in CHCl₃), ¹⁸ electron transfer from TPE to the Mes^{•+} moiety in Acr - Mes - is energetically feasible. Thus, the addition of TPE to a CHCl₃ solution of Acr⁺-Mes and the laser photoirradiation results in formation of TPE $^{++}$ ($\lambda_{max} = 490$ nm, $\epsilon = 9800 \text{ M}^{-1} \text{ cm}^{-1})^{19,20}$ as shown in Figure 3a (open circles). The formation rate of TPE++ obeyed pseudo-firstorder kinetics, and the pseudo-first-order rate constant (k_{obs}) increases linearly with increasing concentration of TPE (Figure 3b,c). The second-order rate constant (k_{ef}) of electron transfer from TPE to Acr $^{\bullet}$ -Mes $^{\bullet+}$ is determined as 2.5×10^9 M^{-1} s⁻¹ in CHCl₃, which is close to be the diffusion-limited value as expected from the exergonic electron transfer. The second-order rate constant of electron-transfer reduction of O_2 (k'_{et}) by the Acr moiety was also determined as 3.8 \times $10^8 \text{ M}^{-1} \text{ s}^{-1} \text{ in CHCl}_3$.

The formation of O₂•- was confirmed by ESR, which was measured in frozen CHCl₃ at 123 K after the photoirradiation

of a chloroform solution of TPE $(1.0 \times 10^{-3} \text{ M})$ and Acr⁺-Mes $(1.0 \times 10^{-4} \text{ M})$ at 233 K $(g_{\parallel} = 2.1050 \text{ and } g_{\perp} = 2.0032).^{21}$ The transient absorption band of TPE*+ decays second-order kinetics as shown in Figure 3d. The second-order rate constant (k_c) was determined as $6.0 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ which is close to the diffusion-limited value in CHCl₃.²² The bimolecular process involves both the radical coupling between TPE*+ and O_2 *- to afford the corresponding dioxetane and the back electron transfer from O_2 *- to TPE*+ to regenerate the reactant pair (Scheme 1).

Scheme 1 Me Me Me Me Me (Acr*-Mes) $h\nu$ $h\nu$

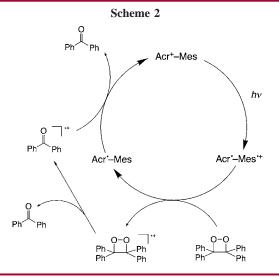
Rate constants of electron transfer and the radical coupling, the quantum yields, and the product yields in MeCN and $CHCl_3$ are summarized in Table 1.

The $E_{\rm ox}$ and $E_{\rm red}$ values of the dioxetane were determined by second-harmonic ac voltammetry (SHACV) as 1.56 and -0.95 V vs SCE, respectively. The $E_{\rm ox}$ value is less positive than the $E_{\rm red}$ value (1.88 V vs SCE)¹² of the Mes* moiety of Acr*-Mes*, whereas the $E_{\rm ox}$ value of the Acr* moiety (-0.57 V vs SCE) is less negative than the $E_{\rm red}$ value of the dioxetane. In such a case, the dioxetane may be oxidized by Acr*-Mes*+ rather than by being reduced to produce the dioxetane radical cation, which undergoes the O-O bond homolysis to produce benzophenone and the radical cation as shown in Scheme 2. The benzophenone radical cation may be reduced by Acr*-Mes to produce another benzophenone molecule, accompanied by regeneration of Acr*-Mes (Scheme 2).

The thermal oxygenation reaction of TPE with oxygen has previously been proposed to proceed via radical chain processes as shown in Scheme 3.^{23,24} The dioxetane is assumed to be produced by direct oxygenation of the

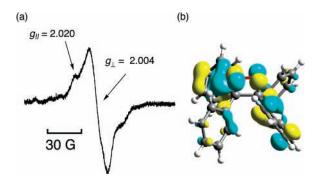
Org. Lett., Vol. 7, No. 19, 2005

⁽¹⁸⁾ The electrochemical measurements were performed on a BAS 630B electrochemical analyzer in deaerated CHCl $_3$ containing 0.20 M Bu $_4$ NClO $_4$ as a supporting electrolyte at 298 K.


⁽¹⁹⁾ Rathore, R.; Kumar, A. S.; Lindeman, S. V.; Kochi, J. K. J. Org. Chem. 1998, 63, 5847.

⁽²⁰⁾ The concomitant decrease in the absorption band due to the Mes*+ moiety of Acr*-Mes*+ is overlapped with an increase in the absorption band at 490 nm due to TPE*+; see ref 13.

^{(21) (}a) Bagchi, R. N.; Bond, A. M.; Scholz, F.; Stösser, R. *J. Am. Chem. Soc.* **1989**, *111*, 8270. (b) Ohkubo, K.; Menon, S. C.; Orita, A.; Otera, J.; Fukuzumi, S. *J. Org. Chem.* **2003**, *68*, 4720.


⁽²²⁾ Kavarnos, G. J. In Fundamental of Photoinduced Electron Transfer; Wiley-VCH: New York, 1993.

^{(23) (}a) Nelsen, S. F.; Akaba, R. J. Am. Chem. Soc. 1981, 103, 2096.
(b) Nelsen, S. F.; Kapp, D. L.; Akaba, R.; Evans, D. H. J. Am. Chem. Soc. 1986, 108, 6863.

dioxetane radical cation with O_2 . However, the saturated dependence of Φ on [TPE] in Figure 2a (and also on $[O_2]$) indicates that such an electron-transfer radical chain process (Scheme 3) is not operative as the major pathway under the present photocatalytic reaction conditions. If the chain process in Scheme 3 were the major pathway, the Φ value would increase linearly with increasing concentration of TPE or O_2 .

The formation of the dioxetane radical cation was confirmed by ESR (electron spin resonance) measurements under photoirradiation at low temperature. A deaerated chloroform solution of Acr⁺-Mes (3.7 × 10⁻² M) with TPE dioxetane (3.0 × 10⁻³ M) was irradiated by a high-pressure Hg lamp at 223 K. The resulting ESR spectrum observed at 143 K is shown in Figure 4a, which exhibits anisotropic signals at g_{\parallel} = 2.020 and g_{\perp} = 2.004. The isotropic g value ($g_{\rm iso}$) is determined as 2.009 \pm 0.001,^{25,26} which agrees with the reported value of a dioxetane radical cation (2.0099).²⁷ The

Figure 4. (a) ESR spectrum of TPE dioxetane radical cation observed under irradiation of a deaerated CHCl₃ solution containing TPE dioxetane (3.0 \times 10⁻³ M) and Acr⁺-Mes (3.7 \times 10⁻² M) at 223 K measured at 143 K (frozen). (b) The SOMO orbital of TPE dioxetane radical cation, calculated by the DFT method using the B3LYP/6-31G* basis set.

formation of TPE dioxetane radical cation was also confirmed by photoinduced electron-transfer oxidation of TPE dioxetane with the singlet excited state of 9,10-dicyano-anthracene ($^1E_{\rm red}^*=1.97~{\rm V}$ vs SCE) in frozen deaerated CHCl₃ at 143 K. The resulting ESR signal was virtually same as that shown in Figure 4a. The SOMO (singly occupied molecular orbital) of dioxetane radical cation involves O–O σ antibonding orbital (Figure 4b). This may be the reason for the facile cleavage of the O–O bond of the dioxetane radical cation. 28

In conclusion, Acr^+ -Mes acts as an efficient photocatalyst for the oxygenation of TPE with O_2 , which proceeds via the radical coupling between TPE $^{\bullet+}$ and $O_2^{\bullet-}$ to yield the 1,2-dioxetane. The final product (benzophenone) is obtained from the O-O bond cleavage of the 1,2-dioxetane radical cation by the electron-transfer oxidation.

Acknowledgment. This work was partially supported by Grants-in-Aid (Nos. 16205020 and 17750039) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: ¹H NMR spectrum of TPE dioxetane. This material is available free of charge via the Internet at http://pubs.acs.org.

OL051696+

4268 Org. Lett., Vol. 7, No. 19, 2005

⁽²⁴⁾ Clennan, E. L.; Simmons, W.; Almgren, C. W. J. Am. Chem. Soc. 1981, 103, 2098.

⁽²⁵⁾ $g_{iso} = (g_{||} + 2g_{\perp})/3$.

⁽²⁶⁾ The ESR signal due to Acr*-Mes, which is more isotropic than the dioxetane radical cation, 12 may be overlapped with that of the dioxetane radical cation around g = 2.004.

⁽²⁷⁾ The isotropic g value of the dioxetane radical cation of adamantylidenadamantane has been reported as $g_{\rm iso} = 2.0099$; see: Nelsen, S. F.; Kapp, D. L.; Gerson, F.; Lopez, J. J. Am. Chem. Soc. **1986**, 108, 1027.

⁽²⁸⁾ C-O bond cleavage of dioxetane radical cation; see: Kamata, M.; Kaneko, J.; Hagiwara, J.; Akaba, R. *Tetrahedron Lett.* **2004**, *45*, 7423.